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Abstract—Smartphones are very effective tools for increasing the productivity of business users. With their increasing computational

power and storage capacity, smartphones allow end users to perform several tasks and be always updated while on the move.

Companies are willing to support employee-owned smartphones because of the increase in productivity of their employees. However,

security concerns about data sharing, leakage and loss have hindered the adoption of smartphones for corporate use. In this paper we

present MOSES, a policy-based framework for enforcing software isolation of applications and data on the Android platform. In

MOSES, it is possible to define distinct Security Profiles within a single smartphone. Each security profile is associated with a set of

policies that control the access to applications and data. Profiles are not predefined or hardcoded, they can be specified and applied at

any time. One of the main characteristics of MOSES is the dynamic switching from one security profile to another. We run a thorough

set of experiments using our full implementation of MOSES. The results of the experiments confirm the feasibility of our proposal.

Index Terms—Android, BYOD, virtualization, access control, context
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1 INTRODUCTION

WORLDWIDE smartphone sales totalled 250 million units
in the third quarter of 2013, up 46 percent from the

same quarter of 2012 [1]. In the smartphone domain, the
Android OS is by far the most popular platform with 82 per-
cent market share. Those figures clearly show the pervasive-
ness of Android, mostly justified by its openness to third
party developers.

Smartphones allow end users to perform several tasks
while being on the move. As a consequence, end users
require their personal smartphones to be connected to
their work IT infrastructure. More and more companies
nowadays provide mobile versions of their desktop
applications. Studies have shown that allowing access to
enterprise services with smartphones increases employee
productivity [2]. An increasing number of companies are
even embracing the BYOD: Bring Your Own Device pol-
icy [3], leveraging the employee’s smartphone to provide
mobile access to company’s applications. Several device
manufacturers are even following this trend by produc-
ing smartphones able to handle two subscriber identifica-
tion modules (SIMs) at the same time.

Despite this positive scenario, since users can install
third-party applications on their smartphones, several
security concerns may arise. For instance, malicious

applications may access emails, SMS and MMS stored in
the smartphone containing company confidential data.
Even more worrying is the number of legitimate applica-
tions harvesting and leaking data that are not strictly nec-
essary for the functions the applications advertise to
users [4], [5]. This poses serious security concerns to sen-
sitive corporate data, especially when the standard secu-
rity mechanisms offered by the platform are not sufficient
to protect the users from such attacks.

One possible solution to this problem is isolation, by
keeping applications and data related to work separated
from recreational applications and private/personal data.
Within the same device, separate security environments
might exist: one security environment could be only
restricted to sensitive/corporate data and trusted applica-
tions; a second security environment could be used for
entertainment where third-party games and popular appli-
cations could be installed. As long as applications from the
second environment are not able to access data of the first
environment the risk of leakage of sensitive information can
be greatly reduced.

Such a solution could be implemented by means of virtu-
alization technologies where different instances of an OS
can run separately on the same device. Although virtualiza-
tion is quite effective when deployed in full-fledged devices
(PC and servers), it is still too resource demanding for
embedded systems such as smartphones. Another approach
that is less resource demanding is paravirtualization.
Unlikely full virtualization where the guest OS is not aware
of running in a virtualised environment, in paravirtualiza-
tion it is necessary to modify the guest OS to boost perfor-
mance. Paravirtualization for smartphones is currently
under development and several solutions exist (e.g.,
Trango, VirtualLogix, L4 microkernel [6], L4Android [7],
[8]). However, all the virtualization solutions suffer from
having a coarse grained approach (i.e., the virtualised
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environments are completely separated, even when this
might be a limitation for interaction). Other limitation is the
hardcoding of the environment specification. Environments
cannot be defined by the user/company according to their
needs but they are predefined and hardcoded in the virtual
machine. Furthermore, the switching among environments
always require user interactions and it could take a signifi-
cant amount of time and power. While researchers are
improving some of these aspects [9], the complete separa-
tion of virtual machines and the impossibility to change or
adapt their specifications remain an open issue.

1.1 Contributions

This paper presents MOSES, a solution for separating
modes of use in smartphones. MOSES implements soft vir-
tualization through controlled software isolation. With
MOSES:

� Each security profile (SP) can be associated to one or
more contexts that determine when the profile
become active. Contexts are defined in term of low
level features (e.g., time and location) and high level
features (reputation, trust level, etc.).

� Both contexts and profiles can be easily and dynami-
cally specified by end users. MOSES provides a GUI
for this purpose. Profiles can be fine-grained to the
level of single object (e.g., file, SMS) and single
application.

� Switching between security profiles can require user
interaction or be automatic, efficient, and transparent
to the user.

We implemented MOSES and ran a thorough set of experi-
ments to evaluate its efficiency and effectiveness. The
experiments show the feasibility and accepted performance
of our solution for storage and energy consumption.

The rest of this paper is organised as follows. In Section 2
we recall some preliminaries for the Android security, while
we discuss the related work in Section 3. MOSES is pre-
sented in Section 4, while details of its architecture are dis-
cussed in Section 5. Section 6 covers MOSES
implementation in details. In Section 7 we describe a thor-
ough evaluation of MOSES. Concluding section discusses
limitations of the current implementation, and envisages
possible future work.

2 ANDROID SECURITY

Google Android is a Linux-based mobile platform devel-
oped by the Open Handset Alliance (OHA) [10]. Most of the
Android applications are programmed in Java and com-
piled into a custom byte-code that is run by the Dalvik vir-
tual machine (DVM). In particular, each Android package is
executed in its own address space and in a separate DVM.
Android applications are built combining any of the follow-
ing four basic components. Activities represent a user inter-
face; Services execute background processes; Broadcast
Receivers are mailboxes for communications within compo-
nents of the same application or belonging to different apps;
Content Providers store and share application’s data. Appli-
cation components communicate through messages called
Intents.

Focusing on security, Android combines two levels of
enforcement [11], [12]: at the Linux kernel level and the
application framework level. At the Linux kernel level
Android is a multi-process system. During installation, an
application is assigned with a unique Linux user identifier
(UID) and a group identifier (GID). Thus, in the Android OS
each application is executed as a different user process
within its own isolated address space. All files in the mem-
ory of a device are also subject to Linux access control. On a
Linux, file access permissions are set for three types of
users: the owner of the file, the users who are in the same
group with the owner of the file and all other users. For
each type a tuple of read, write and execute (r-w-x) permis-
sions is assigned. In Android, by default, the files in the
user’s home directory can be read, written and executed by
the owner and the users from the same group as the owner.
All other users cannot work with these files. So as different
applications by default have different user identifiers files
created by one application cannot be accessed by another.

At the application framework level, Android provides
access control through the inter-component communication
(ICC) reference monitor. The reference monitor provides
mandatory access control (MAC) enforcement on how
applications access the components. In the simplest form,
protected features are assigned with unique security
labels—permissions. Protected features may include pro-
tected application components and system services (e.g.,
Bluetooth). To make the use of protected features, the devel-
oper of an application must declare the required permis-
sions in its package manifest file: AndroidManifest.xml.

As an example, consider an application that needs to
monitor incoming SMS messages, AndroidManifest.

xml included in the application’s package would specify:
<uses-permission android:name=”android.

permission.RECEIVE_SMS”/>. Permissions declared in
the package manifest are granted at the installation time
and cannot be modified later. Each permission definition
specifies a protection level which can be: normal (automati-
cally granted), dangerous (requires user confirmation),
signature (requesting application must be signed with
the same key as the application declaring the permission),
or signature or system (granted to packages signed
with the system key or located in the system image).

3 RELATED WORK

This section provides an overview of the related work. In
particular, Section 3.1 describes research efforts in enhanc-
ing the security of the Android platform. Section 3.2 dis-
cusses BYOD approaches for mobile systems. Solutions
based on secure container (SC) are presented in Section 3.2.1,
while Section 3.2.2 covers virtualization solutions. Sec-
tion 3.2.3 describes solutions that adopted yet other differ-
ent approaches.

3.1 Android Security Extensions

There are a lot of solutions proposed to improve the security
of Android. We consider the ones that are more related to
our system.

In Android, at installation time users grant applications
the permissions requested in the manifest file. Android
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supports an all-or-nothing approach, meaning that the user
has to either grant all the permissions specified in the mani-
fest or abort the installation of the application. Moreover, a
permission cannot be revoked at runtime. To circumvent
this coarse-grained approach, several solutions have been
proposed. Apex [13] allows users to select which permis-
sions to grant to an application during the installation. Saint
[14] is a policy-based application management system aim-
ing at controlling how applications interact with each other.
CRêPE [15] allows a user to create policies that can automat-
ically control the granting of permissions during runtime.

More recently, [16], [17] concentrate on the protection of
the user’s private data. In particular, MockDroid [16] is a
system that can limit the access of the installed applications
to phone data by filtering out information. For instance, an
application querying the contacts’ provider may receive no
results even if the provider is not empty. This approach is
further refined in TISSA [17] where users are able to define
the accuracy level of the information revealed to the appli-
cation by means of privacy levels.

Taintdroid [4] proposes dynamic taint analysis to con-
trol how data flow between applications. In Taintdroid,
taints are statically associated with predefined data sour-
ces, such as the contact book, SMS messages, the device
identifier (IMEI), etc. Taintdroid tracks the flow of tainted
data and notifies the user if the tainted data leave the
device through the outbound network connections. By
using Taintdroid’s tainting capability, AppFence [18] pro-
vides additional mechanisms to shadow sensitive data
and to block unauthorised leakage of data via network.
YAASE [19] encompasses tainting to prevent confuse
deputy and privilege escalation attacks. In [20], [21]
Taintdroid capabilities are used to enforce data-driven
usage control. In [22], [23] taint tracking enables the sys-
tem to trace sensitive information, enterprise and health
data respectively, and enforce policies for that data.
Unfortunately, Taintdroid has some limitations such as
inability to trace implicit flows. Moreover, it prevents the
load of shared libraries by third-party applications to pre-
vent leakages through native code.

Context information plays a pivotal role to enhance
security in mobile devices. In [13], [15], [24], [25], context
is used to trigger security rules at runtime. The
approaches in [20], [21] use context to limit access to data
in some environments. In [23], special context is a neces-
sary condition to generate security notifications. In [22]
the context is used to taint data generated in predefined
environments. FlaskDroid [25] uses context to set up the
values of one or more boolean variables in policies. These
boolean variables are later used to instantiate a policy
that is enforced by FlaskDroid’s policy enforcement sys-
tem, which is based on the extension of SEAndroid man-
datory access control. The mandatory access control
implemented in [25], [26] considerably diminishes the
effect of root exploits.

3.2 Bring Your Own Device Approaches

Besides approaches to improve Android security in general,
some solutions specifically aimed at supporting the BYOD
have been proposed. The most important are listed below.

3.2.1 Secure Container

Secure container is a special mobile client application that
creates an isolated environment on the phone at the applica-
tion layer. The application allows an enterprise administra-
tor to create policies which control this isolated
environment but cannot control the behaviour of a user out-
side this container [27]. This approach does not require the
modification of the system image and is widely explored in
the research community. AppGuard system [28] for
instance, is a standalone Java application that disassembles
apk file, inlines security checks before dangerous instruc-
tions according to a selected policy and then reassembles
and signs the package. Thus at runtime, before executing a
dangerous instruction AppGuard performs a security check
and if the instruction is not allowed according to the policy
an exception is thrown. Jeon et al. [29] use package rewrit-
ing to substitute dangerous instructions to equivalent ones,
which are guarded by additional security checks. These
guarded functions are implemented in a standalone
Android service, which performs the additional checks.
Aurasium system [30] intercepts some critical Bionic libc
functions (e.g., read(), write(), open()) and calls the
Aurasium (safe) version of them.

Many commercial solutions use the concept of security
container implemented as a user application. NitroDesk
TouchDown [31] and Good [32] offer solution with a
prefixed set of business functionality in the container (i.e.,
email). Other solutions, (for instance, Fixmo [33]) offer a set
of basic applications and also an SDK that can be used to
develop new applications, if needed. The SDK provides
wrappers for dangerous operations and passes them
through the secure container application. Divide [34] and
AT&T [35] use package rewriting technique to wrap up
dangerous instructions of third-party applications, so that
the interaction of these rewritten applications with the outer
world happens through the secure container.

3.2.2 Mobile Virtualization

Virtualization provides environments that are isolated from
each other, and that are indistinguishable from the “bare”
hardware, from the OS point of view. The hypervisor is
responsible for guaranteeing such isolation and for coordi-
nating the activities of the virtual machines. Virtualization
has been widely used in traditional computers because it
can: (i) increase security, and (ii) reduce the cost of deploy-
ment of applications (the hardware is shared in a secure
way). With the spreading of mobile devices and with the
increase of their performance capabilities the question of
porting virtualization to mobile platforms became actual.
Virtualization for mobile systems provides specific advan-
tages like: (i) the possibility to separate communication
subsystems (backed by real-time operating system) from
high-level application code (which requires functional rich
operating system with good interfaces); (ii) an opportunity
to provide licence separation; (iii) a chance to increase the
security of the communication stack [36].

However, there are still several barriers for the adoption
of virtualization in mobile devices. The main one is that
ARM architecture, which is the most popular architecture
for mobile devices, has a non-virtualisable instruction set
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architecture [7] (except Cortex-A15 design [37], which adds
hardware-assisted virtualization capabilities). So as effi-
ciency is a major concern in embedded virtualization, full
virtualization approaches (emulation and binary transla-
tion) are not yet applicable for these devices because they
are computational expensive. Thus, for embedded devices
paravirtualization is used, which requires source-code mod-
ification of guest operating system [38]. There are several
approaches to port popular Linux hypervisors to ARM
architecture: Xen [38], L4 [7], KVM [39]. There are also sev-
eral industry solutions: MVP by VMware [40], OKL4 by OK
Labs [41] and vLogix Mobile by Red Bend [42]. All these sol-
utions can be applied to create separate secure environ-
ments for business and private use. However, since all these
virtual machines are simply ported to mobile platforms
while being designed for PCs, they all share low
performance.

A much better approach is Cells [9]. Cells is a new virtual
machine specifically designed for mobile platforms. It pro-
vides lightweight virtualization for Android. The authors
modified Android system in such a way that it is possible to
have several separated environments, called Virtual Phones,
based on the same operating system. Virtual Phones are
completely separated from each other using kernel-level
and user-level device namespace mechanism.

Yet, a common drawback to all the above solutions is that
switching between virtual environments requires user inter-
actions, and the configuration of each virtual environment is
hardcoded and cannot be changed by the end-user.

3.2.3 Other Approaches

Besides the above approaches there few other solutions.
Gupta et al. [43] modified Android framework to support
dual mode of operation, private and enterprise. The modifi-
cation allows to restrict the use of communication capabili-
ties of a phone, to force communication through enterprise
VPN and have an encrypted external storage in enterprise
mode. The authors of TrustDroid [44] proposed to monitor
IPC communications, network traffic and filesystem access
to separate data exchange between different domains, for
instance, between enterprise and personal environments.

Other solutions use the capabilities of Taintdroid to track
sensitive information. The main difference of these
approaches is how to discover sensitive information. For
instance, Feth and Jung [21] proposed to rely on external
authorities which supply data-usage policies with data.
Thus, what data are sensitive in a smartphone is defined by
external trusted authorities. In [22], the authors taint all the
data that is produced or accessed by enterprise applications
as sensitive information. Meanwhile, Ahmed and Ahamad
[23] relies on the separation of public and private sources of
data to detect sensitive information. Differently from
MOSES, none of these solutions detects when a profile is
active without user interaction. Furthermore, all of them
offer only profiles predefined by the solution developers.

4 MOSES OVERVIEW

This section provides an overview of our approach named
MOde-of-uses SEparation in Smartphones (MOSES).

MOSES provides an abstraction for separating data and
apps dedicated to different contexts that are installed in a
single device. For instance, corporate data and apps can be
separated from personal data and apps within a single
device. Our approach provides compartments where data
and apps are stored. MOSES enforcement mechanism guar-
antees data and apps within a compartment are isolated
from others compartments’ data and apps. These compart-
ments are called Security Profiles in MOSES. Generally
speaking, a SP is a set of policies that regulates what appli-
cations can be executed and what data can be accessed.

One of the features introduced in MOSES is the auto-
matic activation of SP depending on the context, in which
the device is being used. SPs are associated with one or
more definitions of Context. A context definition is a Boolean
expression defined over any information that can be
obtained from the smartphone’s raw sensors (e.g., GPS sen-
sor) and logical sensors. Logical sensors are functions which
combine raw data from physical sensors to capture specific
user behaviours (such as detecting whether the user is run-
ning). When a context definition evaluates to true, the SP
associated with such a context is activated. It is a possible
situation when several contexts, which are associated with
different SPs, may be active at the same time. To resolve
such conflicts, each SP is also assigned with a priority allow-
ing MOSES to activate the SP with the highest priority. If
SPs have the same priority, the SP, which has been activated
first, will remain active.

MOSES permits a user to manually switch to a specific
SP. To this end, MOSES provides a system app that the user
can employ for forcing MOSES to activate a given SP. How-
ever, this behaviour can be restricted to avoid that the user
activates unwanted SP in a given context (for instance,
switching to a personal SPwhen at work).

Each SP is associated with an owner of the profile and
can be protected with a password. A SP can be created/
edited locally through an app installed on the device. Addi-
tionally, MOSES supports remote SP management. The for-
mer possibility may be used by a user of the phone for
managing her personal SP, while the latter may be
employed by an enterprise administrator to control the
work SP. To avoid that the user tampers with the work SP,
the security administrator protects the work SP with a pass-
word. In this way, MOSES can be used for realising a
Mobile Device Management solution to manage remotely
the security settings of a fleet of mobile devices.

The current version of MOSES leverages the same idea
of lightweight separation of SPs as the one presented in
[45]. At the same time, although the same idea is exploited,
the approach used by MOSES is completely new. The pre-
vious version of MOSES [45] completely relies on Taint-
droid to split data between different profiles. Data
separation occurred using user-defined policies, which
restricted the flow of information between different pro-
files. In the current version of MOSES, the separation of
application data is implemented on the Linux kernel level
through filesystem virtualization approach. This allows
our system to provide app data segregation out of the box.
Moreover, a user in the new version of MOSES needs to
define security policies only if she wants to apply fine-
grained constraints to data.
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5 ARCHITECTURE

MOSES consists of the components presented in Fig. 1. Cen-
tral to MOSES is the notion of Context. The component Con-
textDetectorSystem is responsible for detecting context
activation/deactivation. When such an event happens, the
ContextDetectorSystem sends a notification about this to the
SecurityProfileManager.

The SecurityProfileManager holds the information linking
a SP with one or more Context. The SecurityProfileManager is
responsible for the activation and deactivation of SPs. The
SecurityProfileManager implements the following logic:

� If a newly activated Context corresponds to the active
SP then the notification is ignored;

� If the SP corresponding to a newly active Context has
a lower or equal priority to the currently running SP,
then the notification is ignored;

� In all other cases, a SP switch has to be performed.
This means that the currently running SP has to be
deactivated and the new SP becomes active.

In the latter case, the SecurityProfileManager sends a com-
mand to the MosesHypervisor informing which is the new
SPs that needs to be activated.

The MosesHypervisor is the component that acts as a
policy decision point (PDP) in MOSES. The MosesHypervi-
sor provides a central point for MOSES security checks
against the policies defined for the active SP to regulate
access to resources. The MosesHypervisor delegates the
policy checks to its two managers: the MosesAppManager
and the MosesRulesManager. The former is responsible for
deciding which apps are allowed to be executed within a
SP. The latter takes care of managing Special Rules.

The MosesPolicyManager acts as the policy administrator
point (PAP) inMOSES. It provides theAPI for creating, updat-
ing and deleting MOSES policies. It also allows a user to
define, modify, remove monitored Contexts and assign them
to SPs. Moreover, this component also controls access to
MOSES policy database (moses.db) allowing only applica-
tionswith special permissions to interact with this component.

The MosesTaintManager component manages the
“shadow database” which stores the taint values used by

Taintdroid. We have extended the functionality of Taint-
droid to perform more fine-grained tainting. In MOSES, we
can taint specific rows of a content provider: to be able to
perform per row filtering when an app access data in the
content provider. For instance, it is possible to filter out
from the query result data the rows which contain the infor-
mation about device identifiers or user contacts. Given the
fact that the enforcement of policies depends on the infor-
mation provided by the MosesTaintManager, this component
acts as a policy information point (PIP).

The decisions taken by the MosesHypervisor need to be
enforced by the policy enforcement point (PEP). MOSES
affects several components within Android middleware
where decisions need to be enforced. For this reason, the
PEP includes several Android components offering system
services such as LocationManager and ActivityManagerSer-
vice. Moreover, some Android core classes (such as the
OSFileSystem and OSNetworkSystem) are modified to
enforce decisions regarding the access to the filesystem and
network, respectively.

The enforcement of separated SPs requires special com-
ponents to manage application processes and filesystem
views. When a new SP is activated, it might deny the execu-
tion of some applications allowed in the previous profile. If
these applications are running during the profile switch,
then we need to stop their processes. The MosesReaper is the
component responsible for shutting down processes of
applications no longer allowed in the new SP after the
switch. In MOSES, applications have access to different data
depending on the active profile. To separate data between
profiles different filesystem view are supported. This func-
tionality is provided by the MosesMounter. More details are
considered in Section 6.2.

To allow the user of the device to interact with MOSES,
we provide two MOSES applications: the MosesSpChanger
and the MosesPolicyGui. The MosesSpChanger allows the
user to manually activate a SP. It communicates with the
MosesHypervisor and sends it a signal to switch to the pro-
file required by the user. The MosesPolicyGui allows the
user to manage SPs. We consider this component in
details in Section 6.5.

6 IMPLEMENTATION

This section describes implementation details of some key
aspects of MOSES. In particular, the version described here
is based on the Android Open Source Project (AOSP) [46]
version 2.3.4_r1. Moreover, MOSES incorporates the func-
tionality of Taintdroid [4] to taint sensitive data.

6.1 Context Detection

One of the contributions of MOSES is that it can automati-
cally switch SPs based on the current Context. The Context-
DetectorSystem is responsible for monitoring Context
definitions and for notifying the listeners about the activa-
tion or deactivation of a Context. The SecurityProfileManager
component, which is one of these listeners, is notified
about the change through the callback functions onTrue

(context_id) and onFalse(context_id), which cor-
respond to activation and deactivation of a Context respec-
tively. The context_id parameter represents a Context

Fig. 1. MOSES architecture.
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identifier. So as MOSES context detection functionality is
decoupled from the rest of the system, it may be easily
extended by integrating other context detection solutions
[47], [48].

When the system starts up, MOSES selects from the
database information about all Contexts and correspond-
ing SPs. MOSES preserves this information in a runtime
map in the form of hCi; ðSPk; prtkÞii, where Ci is the iden-
tifier of Context and ðSPk; prtkÞi is a tuple, which corre-
sponds to the Context Ci and consists of SP identifier SPk

and the priority prtk that corresponds to this profile.
When the ContextDetectorSystem detects that a Context Ci

becomes active (meaning the Context definition is evalu-
ated to true), we select from this map the corresponding
tuple ðSPk; prtkÞi and put it in the list of active SPs.
Because more than one Contexts might be active at the
same time, there may be more than one SP to switch to.
In this case, from the list of active SPs the one with the
highest priority is selected. If the selected SP identifier
differs from the identifier of the currently running SP,
the ContextDetectorSystem sends a signal to the MosesHy-
pervisor to switch to the new profile. Similarly, when Con-
textDetectorSystem detects that a Context Ci becomes
inactive, the tuple ðSPk; prtkÞi is deleted from the list of
active SPs. After that the selection procedure of a SP
with the highest priority is repeated.

6.2 Filesystem Virtualization

To separate data between different SPs, we use a technique
called directory polyinstantiation [49]. A polyinstantiated
directory is a directory that provides a different instances of
itself according to some system parameters. In brief, for
each SPMOSES creates a separate mount namespace [50].

The Android filesystem structure is quite stable, i.e., the
system forces an application to store its files in the
application’s “home” directory that is /data/data/

<package_name>/ (<package_name> is the package
name of the application). During the installation of an appli-
cation, Android creates this “home” folder and assigns it
Linux file permissions to allow only the owner of the direc-
tory (in this case the application) to access the data stored in
it. To provide applications with different data depending
on a currently running SPs, polyinstantiation of “data”
folder may be used, i.e., for each SP a separate mount name-
space, which points to different “physical” data folder
depending on the identifier of a SP, may be created. In
MOSES the described approach is used with two modifica-
tions. The first modification let the system to store all
“physical” data directories under one parent directory
(/data/moses_private/). The second modification cre-
ates the bindings not between the whole data folder and its
“physical” counterpart, but bindings for separate applica-
tion folders. The former modification allows MOSES to con-
trol direct access to the “physical” directories, while the
latter permits to decrease storage overhead, because the
usage of some apps is prohibited in some SPs.

The MosesMounter component is responsible for provid-
ing the above functionality. In particular, it receives the list
of applications’ package names that are allowed to execute
in a SP. For each package name, the MOSES system builds

the paths to the application “home” directory and to its
MOSES “physical” counterpart, using the information of
the identifier of a newly activated SP. These two paths are
passed to the mosesmounter native tool. This tool at first
checks if MOSES “physical” directory exists. If not, then it
creates this folder and copies there the initial application
data from the corresponding “home” directory. Then the
mosesmounter mounts the “physical” directory to a “home”
directory using the Linux command mount(target,

mount_point, ”none”, MS_BIND, NULL) [50], where
mount_point corresponds to the path of the “home” direc-
tory and target corresponds to the path of the “physical”
folder. Thus, the “home” directory always contains the ini-
tial copy of the application data, which are created by the
Android system during the application installation. If a new
SP is created, these initial data are copied to the “physical”
directory providing the application with a fresh copy of its
initial data as if the application has just been installed. If
this process finishes successfully, the MosesMounter stores
the name of this package in the list of mounted points.
Thus, the process of polyinstantiation is completely trans-
parent for the applications: after the mounting the applica-
tions work with the same paths as usual, although these
paths point to another “physical” locations. Thus, there is
no need to modify the applications to support the separa-
tion of data between different SPs.

Before switching to a new SP, the MosesMounter has to
unmount all previously mounted points using the values
stored in the list of mounted points. Similarly to the
mounting, the MosesMounter passes the path to a mounted
point (from the list of mounted points) to the moses-
mounter tool, which performs unmounting. During this
operation it is possible that some processes hold some
files opened. In this case, the unmount command will
fail. To overcome this problem, MOSES sends a SIGTERM

signal to the process and repeats the unmounting. If after
this the unmounting is still unsuccessful, MOSES will
send a SIGKILL signal to the process and once again will
perform the unmount operation.

6.3 Dynamic Application Activation

Each SP is assigned with a list of application UIDs that are
allowed to be run when this profile is active. As it was
discussed in Section 2, each application during the instal-
lation receives its own UID. MOSES uses these identifiers
to control which applications can be activated for each SP.
It should be mentioned that some packages can share
the same UID. This happens if the developer of these
applications have explicitly assigned the same value to
sharedUserId property in the manifest files of the
applications, and signed these packages with the same
certificate. Thus, during the installation of these applica-
tions, the Android system assigns them the same UID. In
this case, MOSES cannot distinguish these applications
and if one of them is allowed in one profile the other will
be allowed as well.

During the SP switching, the MosesAppManager selects
from the MOSES database the list of UIDs, which
are allowed in the activated profile, and stores it into
the set of allowed UIDs. To control the launch of
applications’ services and activities, the hooks into the
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retrieveServiceLocked and startActivityMay-

Wait methods of the ActivityManagerService and
the ActivityStack classes correspondingly are put.
These hooks communicate with the MosesAppManager
and check against the set of allowed apps if a compo-
nent of an application can be launched. Additionally,
the MosesAppManager controls the appearance of appli-
cation icons in Android’s Launcher application. When a
new SP is activated, only the icons of the allowed appli-
cations for this profile will be displayed.

6.4 Attribute-Based Policies

Within each SP, MOSES enforces an attribute based access
control (ABAC) model [51]. The idea is that within each SP,
users can define fine-grained access control policies to con-
straint application behaviour. For instance, the user may
want to deny an application to read the files on an external
storage. In this case, the user may write a policy which will
still let the application to run within the profile but the
access of this application to files on an external storage will
be limited. For defining and editing policies, MOSES pro-
vides an activity shown in Fig. 2d.

We have defined a simple policy language using the
ABAC model. The attributes types that are taken into
consideration in the MOSES language are capitalised in
Listing 1. These are Subject, Operation, Taint, Target, and
SP-Name. These attributes are described in the following:

Listing 1. Policy language used for ABAC rules

Subject represents the application to which the rule is
applied. The application UID is retrieved through the GUI
provided by MOSES for management (see Fig. 2c), listing
the applications installed in the system.

Operation is the action that the subject is executing. The
value of this attribute is dependent on the control hooks
added by MOSES in the Android framework. Each hook
communicates with a special class in the framework

library that processes the information obtained from
the operation hook. For instance, for controlling access
to ContentProvider, we have injected hooks in the Conten-
tResolver class. Similarly, for network and filesystem
operations we have injected hooks in the core library. Cur-
rently, MOSES supports the following Operation types:

� ContentProvider: Query ContentProvider, Insert in
ContentProvider, Update ContentProvider, Delete
ContentProvider.

� LocationProvider: Get Last Known Location, Request
Location Updates, Add Proximity Alert, Request Sin-
gle Update.

� Network: Receive Internet Data, Send Data to the
Internet.

� Filesystem: Read from a File, Write to a File.

� DeviceId: Get Device ID.
MOSES supports also information flow control using the

tainting mechanism provided by Taintdroid. Policies can
include the optional attribute Taint to specify the taint type
associated with the data accessed by the subject.

The Target attribute represents the resource that is
being accessed. It can have either fixed or volatile values.
The values for LocationProvider and DeviceId operations
are fixed and correspond to GPS and IMEI. In the case of
ContentProvider, Network and Filesystem the Target values
are volatile. This means that a target may be specified
partially. For instance, for the Filesystem operations the
user can specify the following partial target [/data/

data/<package>/
�
]. We developed these volatile tar-

gets to allow the system to enforce different behaviour for
the targets that differs only partially. If a user wants to
specify different access behaviour, for instance, for a
directory and its subdirectory, she should create a sepa-
rate policy rule for the directory and another one for the
subdirectory.

SP-Name attribute represents the SP name where the
policy is valid.

The decisions that can be assigned to policy rules
are: ALLOW, DENY and ALLOW_WITH_PERFORM. The effects

Fig. 2. Screenshots of MOSES Profile Manager application: (a) Context creation, (b) security profile creation, (c) application assignment to a security
profile, (d) ABAC rule creation.
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of the first two are obvious. The decision ALLOW_WITH_-

PERFORM corresponds to allow with a restrictive obligation
that performs additional action of the data returned by the
operation. For instance, for “Get Device ID” operation a
function can be chosen that will obfuscate the real IMEI of
the device. The functions and their implementations are
specified in a special built-in library. ALLOW_WITH_PER-
FORM decision manage to enforce security constraints speci-
fied in the profile minimizing the impact of already
installed applications.

It is possible that two ormore rules may be defined for the
same attribute values. To resolve these conflicts, the user
should assign a priority value to each rule. In this case, the
decision of the rule with the highest priority will have prece-
dence over the decisions of other rules; in the case of equal
priorities, then the last inserted rule takes priority.

For some combinations of attribute values, it might be the
case when no rules apply. In this case, our system uses a
default decision value (either allow or deny), which is
assigned to the SP.

6.5 Security Profile Management

To give a user the ability to manage the SPs in her device,
the MosesPolicyGui application is developed. This is a sys-
tem application signed with a system key and assigned
with a special permission. This allows MosesPolicyGui
application to communicate with the MosesPolicyManager
and manage the SPs. Fig. 2 provides several screenshots
of the application running on a device. Due to the lack of
space, we will not show screenshots of all activities the
application provides.1

The MosesPolicyGui manages Contexts and SPs. We
develop an application that allows a user to easily configure
MOSES functionality. Fig. 2a shows how to create a new
Context definition. The user specifies the name of a Context
and the parameters of the sensors used to detect the context
around the device.

To define a new SP the application provides a wizard
that guides the user through the steps. Fig. 2b shows the
first activity of this wizard. In this activity, the user has to
define the name of a profile, the default decision and the
profile priority. The screenshot in Fig. 2c shows how to
assign applications to the SP. Finally, Fig. 2c shows how to
create an ABAC policy rule to deny the browser (UID
10036) to access Google’s homepage.

7 MOSES EVALUATION

In this section, we report on the thorough experiments we
ran to evaluate the performance of MOSES. For all the
experiments, we used a Google Nexus S phone.

7.1 Energy Overhead

To measure the energy overhead produced by MOSES, we
performed the following tests. We charged the battery of
our device to the 100 percent. Then, every 10 minutes we
run four system applications (sequentially) via a monkeyr-
unner [54] script: Calculator, Browser, Contacts and Email.
For each of them the script performed common operations

representative for the applications (multiplication of num-
bers in case of Calculator, browsing several webpages in
case of Browser, calling a number and creating an account
in case of Contacts, and composing and sending a email in
case of Email application). Each experiment lasted for a total
of 120 minutes. We executed this experiment for three types
of systems: Stock Android, MOSES without SP changes,
and MOSES with SP changes (the system switched between
two profiles every 20 minutes).

During each experiment, every 10 seconds, our service
measured the level of the battery and wrote this value into a
log file. For each of the three considered systems, we exe-
cuted the test 10 times and averaged the obtained values.
The results of this experiment are reported in Fig. 3. We
note that the curves for the three considered systems behave
similarly. This shows that the fact that MOSES is just run-
ning, or even switching between context does not incur a
noticeable energy overhead.

7.2 Storage Overhead

One of the most significant overheads produced by MOSES
is the storage overhead. In fact, the separation of data for
different SPs means that some application information will
be duplicated in different profiles.

In general, the storage size consumed by a system can be
expressed by the following equation:

size ¼ sizeðOSÞ þ
Xk

j¼1

sizeðAEjÞ þ
Xk

j¼1

sizeðADjÞ; (1)

where OS is the operating system, AEj and ADj, are the
application executables and the application data or the jth
application. In the specific case of MOSES, sizeðADÞ is
equal to:

sizeðADMOSESÞ ¼
Xnþ1

i¼1

Xk

j¼1

ðsizeðADijÞÞ; (2)

where sizeðADijÞ is the size of the data of the jth application
in the ith SP, k is the number of installed applications, and n
is the number of SPs. One additional copy of application
data (i.e., the ðnþ 1Þth one) is required to store initial

Fig. 3. Energy overhead.

1. The demo presented at [52] is available on our website [53].
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information of all applications. If a new SP is created, we
need a “clean” copy of application data to be replicated into
this new profile. Hence, MOSES stores a copy of application
data just after the installation of the application: this copy is
later used for replication when a new SP is created. It
should be mentioned that for MOSES only the initial data of
applications are duplicated. The data produced by applica-
tions during runtime are not replicated between SPs. Sec-
ond, the data of applications, which are not allowed in a
profile, are not copied into the profile.

When comparing MOSES with competitor approaches,
MOSES produces less storage overhead. For instance, in
case of mobile virtualization [40], [41], [42] not only applica-
tion data are duplicated (as for MOSES), but also applica-
tion executables and an operating system (sometimes
partially [9]). Dual persona approaches [29], [30], [34], [35]
additionally should have a separate copy of application exe-
cutables in different profiles. Thus, MOSES adds less over-
head comparing to this set of approaches because it only
works with one copy of application executables.

Moreover, other improvements (currently left as future
works) are possible for MOSES, e.g., currently for each SPs
MOSES stores its own copy of the shared libraries of an
application, instead they could be shared among the differ-
ent profiles.

7.3 Microbenchmark

To assess the overall performance of our system, we
decided to run a set of experiments with a benchmarking
system. In particular, we used the Java microbenchmark
CaffeineMark (version 3.0) [55] ported on the Android plat-
form. This benchmark runs a set of tests which allows a
user to assess different aspects of virtual machine perfor-
mance. The benchmark does not produce absolute values
for the tests. Instead it uses internal scoring measures,
which are useful only in case of comparison with other sys-
tems. The overall score of CaffeineMark 3.0 is a geometric
mean of all individual tests. That is why, to assess MOSES
we decided to compare it with Stock Android system (ver-
sion 2.3.4_r1) and Taintdroid system [4] (based on the
Android system version 2.3.4_r1). We included in the com-
parison Taintdroid because MOSES incorporates its func-
tionality, so we wanted to highlight the additional overhead

that MOSES introduces compared to Taintdroid. We ran
each benchmark 10 times.

For CaffeineMark 3.0 Java benchmark the observed
results are reported in Fig. 4. From the figure, we notice that
the results for Taintdroid and MOSES are almost the same:
the checks that MOSES implements on top of Taintdroid do
not have a significant influence on the results of this bench-
mark. Meanwhile, the difference of overall scores between
unmodified (Stock Android) and modified systems (either
Taintdroid or MOSES) is quite big. In fact, we can observe
the performances are reduced by a 34 percent: the bench-
mark scores are 5,910.7 for Stock Android, while 3,895.9 for
Taintdroid and 3,923.3 for MOSES, the main contributors to
this overhead are Loop (about 51 percent overhead) and
Float (48 percent) tests.

7.4 Security Profile Switch Overhead

In this section, we present the results of the experiments
measuring the time required to switch between SPs. We
remind that during the profile switch (from an ”old” to a
”new” profile), MOSES performs the following operations:
the unmounting of the data folders of the old profile, the
mounting of data folders of the new profile, the unloading
of the old and the loading of the new Special Rules. There-
fore, the time to switch between SPs should depend on the
number of Special Rules and the number of user apps. To
find out the dependency between the time and these param-
eters we ran two sets of experiments. First, we measured the
time required to switch SPs varying the number of user
applications. Then, we did the same measurement while
changing the number of Special Rules. To measure this time,
we put a call SystemClock.elapsedRealtime() before
and after the switching operations, and calculated the dif-
ference between the values produced by this function.

To explore the dependency between the time and the
number of applications we varied the number of user appli-
cations from 0 to 10. For each number of applications, a
clean MOSES system was used (i.e., the system had been
flashed on the phone just before the experiment). Then, a SP
was created allowing all applications to be launched. Then,
we measured the time of switch between this new profile
and DEFAULT SP. For each number of applications we
repeated the switch for 20 times and then calculated the
average time of the switch. For all experiments the same set
of 10 applications was used.

The results are shown in Fig. 5a. From this figure, we
observe that the switching time increases with the number
of applications: moving from 1,962 ms for 0 applications to

Fig. 4. CaffeineMark Java benchmark results (with standard deviation).

Fig. 5. Time for profile switch (with standard deviation) as a function of
the number of: (a) User applications, (b) special rules.
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3,496 ms for 10 applications. The rise of the time is associ-
ated with the increase of mounting and unmounting opera-
tions that MOSES performs during the switch (see
Section 6.2). Furthermore, we note that the time is not uni-
formly rising with the growth of the number of applications.
In particular, after the third application we observe a sharp
increase of the function. The explanation of this phenomena
is the following. The third application (named com.anti-

virus) after the installation starts a service that opens a file
(google_analytics.db) and keeps it opened. Thus,
MOSES has to kill the service before the unmounting could
be performed successfully. In fact, MOSES system is
designed in such a way that at first it simply tries to
unmount the folder. Then, if this operation is unsuccessful,
it sends to the blocking process a SIGTERM signal and tries
to unmount again. If this try fails then MOSES kills the pro-
cess, which holds a file opened, and performs the unmount-
ing. Between the different tentatives, MOSES sleeps for
200 ms. We observe that the main time overhead is brought
by these unsuccessful unmountings. The spread between
three and 10 applications is merely about 250 ms.

The second experiment was conducted similarly to the
first one, but in this case we varied the number of Special
Rules assigned to a new SP: from 0 to 100, increasing by
10 rules each time. The results of this experiment are
reported in Fig. 5b. As we can see, the time of the switch
slowly increases with the increase of the number of rules.
We can also note that the standard deviation for the
reported values is significant.

We also noticed that the time for the first change of pro-
files is considerably higher than for the following switches
(although this cannot be inferred from the graphics which
report average values). For instance, for five applications
the time of the first switch is 9,172 ms while for the second
is just 3,431 ms. In fact, during the first switch, for each
application MOSES has to copy the initial data of an appli-
cation to a new profile. That is why, the time for the first
switch is several times higher than for the following
switches. This fact also explains the wide spread of the stan-
dard deviation on the graphics.

7.5 Overheads of Fine-Grained Control

As for MOSES fine-grained control overhead, it is mainly
due to the checks of ABAC rules. To assess this overhead,

we developed three different applications. The first applica-
tion gets the IMEI of the phone, and stores it into the
Android log. The second app reads the information about
10 contacts from the address book of a phone. The third
one writes 1,000 characters in a file. We measured the
time of the checked operation using system function Sys-

temClock.elapsedRealtime(). We ran these applica-
tions on different systems: Stock Android, Taintdroid
(version 2.3.4) and on several variants of MOSES system,
which differ from each other by the number of ABAC rules.
In particular, we varied the number of rules for each app
from 0 to 100, therefore, the total number of rules in the sys-
tem changed from 0 to 300 (since there were three different
applications). All ABAC rules for an app were the same. An
example of ABAC rule for filesystem application
(MsFsTester) is provided in Listing 2. During the assignment
of the rules to SP, we assigned the same priority to all of
them. We underline that this means considering the worst
case, since during the check MOSES has to consider each
rule. For each system, we ran each type of check for
1,000 times and calculated the average, standard deviation
and overhead for each variant of the systems. The results
are summarized in Table 1. Moses_010 in “System” column
means that there are 10 ABAC rules for each considering
operation resulting to total 30 rules entered into the system.
Similarly, Moses_000 means that there are no rules in
MOSES system assigned to the current SP.

Listing 2. Example of ABAC rule

The developed applications represent three different
check strategies that are implemented in MOSES. As
described in Section 6.4, for each operation which
MOSES can check, there is a separate class implemented
in the framework library. According to the first strat-
egy, the hook for MOSES check is embedded into the
framework library. In this case, the hook simply calls
the check method of the corresponding operation class
and enforces the result of the check. For instance, this
strategy is used for “Get Device ID” operation check. In
the second strategy, the hook is also placed into the
framework library, but in the corresponding operation

TABLE 1
Operation Time: Average (AV), Standard Deviation (SD), Overhead (OV)
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classes the additional checks against ContentProvider’s
shadow database are performed. A representative of this
strategy is the check of “Query ContentProvider” opera-
tion. In the third strategy, the hook is placed into the
core library while the check is performed in the
framework library. The call of the check method in the
corresponding operation class is performed using Java
reflection. The strategy is used for “Write to a File” oper-
ation check. Thus, MsImeiTester, MsCpTester and
MsFsTester were developed to assess the overheads of
these three strategies correspondingly.

Comparing the results obtained for Stock Android,
Taintdroid and Moses_000, we can see that the main
time overheads are added by MOSES operation checks.
In fact, Taintdroid adds 16.9 percnt time overhead in
case of “Get Device ID” operation, 21.4 percent for
“Query ContentProvider” and 0.4 percent in case of
“Write to a File” operation, while MOSES even with no
ABAC rules adds 82.1, 92.4 and 131.1 percent overheads
correspondingly comparing with Stock Android. Further,
the results show that the most time consuming operation
check is “Write to a File”. Not surprisingly, because Java
reflection used in the third MOSES check strategy is a
quite expensive operation.

As we expected, time overheads grow if we increase the
number of rules. We can see that Moses_000 adds 82.1, 92.4
and 131.1 percent overheads. At the same time, Moses_100
adds 108.9, 100.6 and 224.5 percent. We can see that relative
overhead for “Get Device ID” operation is higher than for
“Query ContentProvider”. On the other hand, the absolute
overhead is 0.273 ms for the first operation and 0.868 ms for
the second operation. Thus, the small percentage in case of
the second operation can be explained simply by the fact
that it takes more time to process the results of the operation
in the test application.

The absolute values of overheads of our three opera-
tions between Moses_000 and Moses_100 are 0.273, 0.868
and 0.764 ms, respectively. The difference between the
values is connected with the fact that it takes different
time to process target attribute type in case of fixed and
volatile targets. In case of fixed target, there is no need to
compare the attribute value with the pattern. On the
contrary, in case of volatile target MOSES has to com-
pare the target value with the pattern in each relevant
ABAC rule.

We assume that in a production system the total num-
ber of rules for a SP may be higher then the maximum
number considered in our experiments (because the num-
ber of applications in a production system might be
higher). At the same time, the number of rules for a tuple
(UID, Operation) is smaller in real-world scenarios than
considered in our experiments. So as the tuple (UID, Oper-
ation) serves as an index in our system, the number of rule
checks in a production system, which causes the main part
of the time overhead, will be smaller than the number of
rules considered during the experiments. Therefore, we
assume that the main part of time overhead in a real-
world system will be caused not by the number of ABAC
rules in the system but by the embedded MOSES check
itself. Unfortunately, this is the price we have to pay pro-
viding additional security mechanisms.

8 CONCLUSIONS AND FUTURE WORK

MOSES is the first solution to provide policy-based security
containers implemented completely via software. By acting
at the system level we prevent applications to be able to
bypass our isolation. However, at the present moment
MOSES has also some limitations. At first, fine-grained poli-
cies and allowed applications are specified using the UID of
an application. Meanwhile, in Android it is possible that
some applications share the same UID. Thus, if we apply
MOSES rules and restrictions to one application they auto-
matically will be extended to the other ones with same UID.
Furthermore, some fine-grained policies in MOSES are built
on top of Taintdroid [4] functionality. Thus, MOSES inherits
the limitations of Taintdroid explained in Section 3. It
should be also mentioned that the applications that have
root access to the system can bypass MOSES protection.
Thus, MOSES is ineffective in combating with the malware
that obtains root access, e.g., rootkits.

MOSES can also be improved in several aspects. For
instance, to make the policy specification process easier, a
solution could be to embed into the system policy templates
that can be simply selected and associated to an application.
It should be also mentioned that currently MOSES does not
separate system data (e.g., system configuration files) and
information on SD cards. In the future we plan to add this
functionality to the system. Moreover, performance over-
heads are also planned to be reduced considerably in the
future versions.
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